300
Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3
Wang, D., Zhang, J., Zuo, T., Zhao, M., Lisch, D., & Peterson, T., (2020). Small RNA-
mediated de novo silencing of Ac/ds transposons is initiated by alternative transposition in
maize. Genetics, 215(2), 393–406. https://doi.org/10.1534/genetics.120.303264.
Wang, X., Vignjevic, M., Jiang, D., Jacobsen, S., & Wollenweber, B., (2014). Improved
tolerance to drought stress after anthesis due to priming before anthesis in wheat (Triticum
aestivum L.) var. vinjett. Journal of Experimental Botany, 65(22), 6441–6456. https://doi.
org/10.1093/jxb/eru362.
Wang, X., Zhang, J., Li, F., Gu, J., He, T., Zhang, X., & Li, Y., (2005). MicroRNAidentification
based on sequence and structure alignment. Bioinformatics, 21(18), 3610–3614. https://doi.
org/10.1093/bioinformatics/bti562.
Wani, S. H., & Gosal, S. S., (2010). Genetic engineering for osmotic stress tolerance in plants-
role of proline. IUP Journal of Genetics & Evolution, 3(4), 14–25.
Wani, S. H., Singh, N., Devi, T. R., Haribhushan, A., Jeberson, S., & Malik, C., (2013).
Engineering abiotic stress tolerance in plants: Extricating regulatory gene complex. In:
Malik, C. P., Sanghera, G. S., & Wani, S. H., (eds.), MD Conventional and Non-Conventional
Interventions in Crop Improvement (pp. 1–21). Publications PVT LTD: New Delhi, India.
Wassenegger, M., Heimes, S., Riedel, L., & Sanger, H. L., (1994). RNA-directed de novo
methylation of genomic sequences in plants. Cell, 76(3), 567–576.
Willmann, M. R., & Poethig, R. S., (2007). Conservation and evolution of miRNA regulatory
programs in plant development. Current Opinion in Plant Biology, 10(5), 503–511. https://
doi.org/10.1016/j.pbi.2007.07.004.
Woodrow, P., Pontecorvo, G., Ciarmiello, L. F., Annunziata, M. G., Fuggi, A., & Carillo,
P., (2012). Transcription factors and genes in abiotic stress. In: Venkateswarlu, B.,
Shanker, A., Shanker, C., & Maheswari, M., (eds.), Crop Stress and Its Management:
Perspectives
and
Strategies
(pp.
317–357).
Springer:
Dordrecht.
https://doi.
org/10.1007/978-94-007-2220-0_9.
Wu, H., Li, B., Iwakawa, H. O., Pan, Y., Tang, X., Ling-Hu, Q., Liu, Y., et al., (2020). Plant
22-nt siRNAs mediate translational repression and stress adaptation. Nature, 581(7806),
89–93. https://doi.org/10.1038/s41586-020-2231-y.
Wu, Y., Wei, B., Liu, H., Li, T., & Rayner, S., (2011). MiRPara: A SVM-based software
tool for prediction of most probable microRNA coding regions in genome scale sequences.
BMC Bioinformatics, 12(1), 1–14. https://doi.org/10.1186/1471-2105-12-107.
Xia, K., Wang, R., Ou, X., Fang, Z., Tian, C., Duan, J., Wang, Y., & Zhang, M., (2012).
OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers,
early flowering and less tolerance to salt and drought in rice. PloS One, 7(1), e30039.
https://doi.org/10.1371/journal.pone.0030039.
Xie, F., & Zhang, B., (2010). Target-align: A tool for plant microRNA target identification.
Bioinformatics, 26(23), 3002, 3003. https://doi.org/10.1093/bioinformatics/btq568.
Xie, K., Minkenberg, B., & Yang, Y., (2015). Boosting CRISPR/Cas9 multiplex editing
capability with the endogenous tRNA-processing system. Proceedings of the National
Academy of Sciences, 112(11), 3570–3575. https://doi.org/10.1073/pnas.1420294112.
Xin, M., Wang, Y., Yao, Y., Xie, C., Peng, H., Ni, Z., & Sun, Q., (2010). Diverse set of
microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum
aestivum L.). BMC Plant Biology, 10(1), 1–11. https://doi.org/10.1186/1471-2229-10-123.
Xu, J., Chen, Q., Liu, P., Jia, W., Chen, Z., & Xu, Z., (2019). Integration of mRNA and
miRNA analysis reveals the molecular mechanism underlying salt and alkali stress